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Project Objective

The overall objective of this project is to develop, test, and validate a general drag model for 
multiphase flows in assemblies of non-spherical particles by a physics-informed deep 
machine learning (PIDML) approach using artificial neural network (ANN). 
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CFD Software



Project Status
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Motivation
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1. Energy industry

Å Gasifiers

Å Combustion

2. Food industry

3. Chemical process



Motivation

ÅThe drag coefficient primarily depends on
Å Shape

Å Reynold number

ÅThe variations are highly non-linear

ÅSingle correlation cannot cover all the 
particles

ÅRequires more sophisticated modelling 
such as Neural network
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Current State-of-Art

ÅHaider & Levenspiel (1989)

ÅYow et al. (2005)

ÅHölzer & Sommerfeld (2008)

ÅHe & Tafti (2019)

ÅYan et al. (2019)
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Nearest Particlesô location
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BPNN RBFNN

Knowledge gap: A drag model which can effectively discriminate shape of the particles and easy to apply in the current 

MFiX framework 


